ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING

AUGUST 2 - 14, 2015

The Argonne Training Program on Extreme-Scale Computing (ATPESC) provides intensive, two-week training on the key skills, approaches, and tools to design, implement, and execute computational science and engineering applications on current high-end computing systems and the leadership-class computing systems of the future. As a bridge to that future, this two-week program fills the gap that exists in the training computational scientists typically receive through formal education or other shorter courses. ATPESC is funded by the U.S. Department of Energy's Office of Science.

PROGRAM CURRICULUM

Renowned scientists, HPC experts, and leaders serve as lecturers and guide hands-on laboratory sessions. The core curriculum includes:

- Computer architectures and their predicted evolution
- Programming methodologies effective across a variety of today's supercomputers and that are expected to be applicable to exascale systems
- Approaches for performance portability among current and future architectures
- Numerical algorithms and mathematical software
- Performance measurement and debugging tools
- Data analysis, visualization, and methodologies and tools for Big Data applications
- Approaches to building community codes for HPC systems

COST

There are no fees to participate. Domestic airfare, meals, and lodging are provided.

INTERESTED?

- Visit the ATPESC website to learn more: http://extremecomputingtraining.anl.gov/
- Check out the 2014 agenda and videos to get a feel for future program content: http://extremecomputingtraining.anl.gov/ curriculum/agenda2014 and http://extremecomputingtraining.anl.gov/2014-videos
- 3. Sign up for the mailing list on the ATPESC website to stay informed. Details for the 2015 program will be announced soon.

Sixty-two participants attended the 2014 ATPESC program held in St. Charles, IL, from August 3 - 15, 2014.

CONTACT >> support@ExtremeComputingTraining.anl.gov

